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Renormalization group analysis of the anisotropic nonlocal Kardar-Parisi-Zhang equation
with spatially correlated noise
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We study an anisotropic nonlocal Kardar-Parisi-Zhdk§Z) equation with spatially correlated noise by
using the dynamic renormalization group method. When the signs of nonlinear terms in parallel and perpen-
dicular directions are opposite, the correlated noise coupled with the long ranged nature of interaction produces
a stable non-KPZ fixed point fad<d.. For the uncorrelated noise, the roughness and dynamic exponents
associated with the stable fixed point are different from those of the isotropic nonlocal KPZ equation, while for
the correlated noise the exponents are the same as those of the isotropic case.

PACS numbegps): 05.40—a, 68.35.Fx, 05.70.Ln, 64.60.Ht

For a long time the kinetic roughening of surface hascoupled with the long-range interactions, produces new fixed
attracted much interest because it is related to various physpoints at which the roughness of the surface depends on both
cal phenomena such as crystal growth, bacterial growth, pahe long-range interaction strength and the spatially correla-
per wetting, molecular beam epitaxy, €it]. An interesting tion parameter.
feature of the kinetic roughening of a surface is that the On the other hand, it is well known that the critical expo-
global surface width shows a nontrivial scaling behavior.nents can also be modified by an anisotropic nature of the
The global surface width is defined byW(L,t)  substrate[15]. Wolf [15] studied the anisotropic KPZ
=(L793;[h;(t) = h(t)]?)Y2 The surface width scales &% (AKPZ) equation, which can be applied to various physical
17 for t<LZ? and W~L? for t>LZ% Hereh.L.d, and growth problems such as ion-sputtered surface grgw,

h;(t) denote the mean height, the system size, the substr % ?Larfag\igéowth (t)'n the re_tcionstructed surface structure
dimension, and the height at tinhand sitel, respectively«, - 1he equation 1s written as
z, and B(=al/z) are the roughness, the dynamic, and the

i . ; h(r,t) A
growth exponent, respectively. A well-known continuum J = V2h+ v, V2h+ M V,h)2
equation for the kinetic roughening of a surface is the ot Vit v Vit 2 (Vi)
Kardar-Parisi-ZhangKPZ) equation[2], N
+ S (Vi1 p), 2
ah(x,t) . A ) 2
pr =vVh+ E(Vh) + (X, t). (1)

whereV , (V)) is the gradient along the perpendiculpar-

- o _ llel) direction. The anisotropy means=v /v, #1 and

The noise #(r,t) satisfies (n(k,0))=0, and & : v )
<77(k,(1))77('(,,0),)>:2D5d(k+k,)5(61<)+(1),),> where r}\E)\H/)\J_?&l From Stud.y|ng the AKPZ equatl(?n with
n(k, ) is the Fourier transform of noiss(r,t) andd is the white noise in 2+ 1 dimensions by using the dynamic renor-

substrate dimension. The KPZ equation has a nonlinear terr'i’i“"‘"z"’ltion group(RG) method, Wolf found that when the

of short-range describing the lateral growth. The KPZ equa—s'gns ofA’s are opposite ,<0), the nonlinear terms turn

tion without a nonlinear term is called the Edwards-CUtto be irrelevantunder the RG transformation. As a result,
Wilkinson equation3]. The conserved version of the KPZ the AKPZ equation with opposite signs DS belongs to the
equation is a conserved KPZ equatiah5). Edwards-Wilkinson([EW) unl\{ersallty class.

The applicability of the KPZ equation seems to encom- To our knowledge, there is no study. about how.the pres-
pass a variety of growth phenomena, but KPZ behavior is nof"'c_Of anisotropy changes the physical properties of the
observed in many experiments about the surface growth. R&IKPZ equation _W'th sp_atlally correlated noIS€. In t_h|s Paper,
cently it was proposed that incorporating the long-ranged"e Study the anisotropic NKP@ANKPZ) equation with spa-
nature of interactions is necessary for a wide class of proptally correlated noise by using the dynamic RG method. The

lems such as the long-ranged hydrodynamic interactionsﬁ?‘NKPZ equation with spatially correlated noise is written as
proteins, colloids, etd.6—10.. Phenomenological equations

in the presence of long-range interactions, the nonlocal KPZ on(r,t) 2

(NKPZ) equation[11] and the nonlocal conserved KPZ st Vi) 4 VIR(r D+ 9(r.t)
(NCKP2) equation[12] were introduced. The long-range ef-

fect of the nonlinear terms in both equations is introduced by n J' dr’lf} (r')
coupling the gradients at two different points. It was found qgh 2

that, due to the long-ranged nature, the roughness of the

surface is changed, and several distinct phases appear. The XVgh(r+r',t)-Vyh(r—r',t). €
effect of spatially correlated noise on the NKPZ and NCKPZ

equations was also studigd3,14. The correlated noise, The noisez(r,t) satisfies{ 7(k,w))=0, and
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TABLE I. Table of the effective coupling constants. For ex- dr, 1
ample,U , is the coupling constant, where long-ranged interaction VA r,,[ (@)— r—(O)} , (6)
couples with white noise. ’ v

. . . du 2-d (UgtU3,) 3
Coupling constant Interaction Noise d;ozuoo . I ogu 0 (%) + EUOO(.)a @
Ugo Short range White noise / 0o
U,o Long range White noise B 2 2
Uoo Short range Correlated noise dU 0 = 2-d+2p (Uit (x)+ §U (@)
i /70 2 2U P
U,o Long range Correlated noise PO ®)
du 2—d+20 3
(n(k,0)n(k",0"))=2D(k,w)8'Kk+k')S(w+w'). 07 Yy, =— 742
(4) d/ UOo’ 2 ZUOO'(.)Y (9)
For spatially correlated noise, the form bf(k,») can be dU,, 2—d+2p+20 3 ° g
written asD,+ Dk~ 2°. Hereo is an exponent characteriz- ds ~— Tre 2 + EUW( ), (10

ing the decay of spatial correlations. The kerdel(r) and
9)(r) have a short-ranged pathy 6(r) and a long-ranged where each symbol is given by
part \,ur” "% In Fourier space,dy(k)=Xgy+\,yk *,

whereW arel and|. We consider only the case of positive 2 2 2C,

v, andy for stable surfaces. In this study, when the signs of (@)=(UgotUg,)| Ao~ d—1 +(UoU o+ UosU o)
\'s are opposite, we found that a non-NKPZ fixed point

exists in the parameter space of the effective coupling con- <A 2Cq ) +2‘P(A _2C, ) B 3PBo}
stants ifd<d.. However, when the signs of’s are the 0 d-1 P d-1/ d-1
same, the anisotropy becomes irrelevant, and thus the scaling

behavior is the same as that of the isotropic NKPZ equation +27P(U2,+ U2 )(A _2C, 3po) 20
[13]. PO Fpel\ T d—1  d—1/ d-1

The calculations of the RG transformation were per- 5 B o
formed by combining two methods, one of which was used X[UgeBotUosUe(Bot277B,) +27°U B, ],
by Chattopadhyay to study the NKPZ equation with corre- (12)
lated nois€[13], and the other by Jeongt al. to study the
AKPZ equation with correlated noig@8]. The steps of the ()= (U2 + U2 )(Co+r0\Eq)+21 2(UoU yo+ UoyU o)
RG transformation are as follows. First, the anisotropic ex- 7 P e
ponent y is introduced to relate two characteristic length X(Cyt rpAEO)+2‘2’J(U§O+ Uﬁg)(Cer rmEp), (12)
scales ag|~ &Y, where&) and ¢, are characteristic length
scales in parallel and perpendicular directions on the sub-(O)=(U3,+ Ugc)rox(Ao—2rVEO)+(U00Up0+ Uo,U
strate, respectively. Next, a coarse-graining transformation is
performed within the one-loop order by integrating out the X[r o\ (Ao—2r Eq) +27 ro (A, —2r E))
fluctuations of heights within small length scalé$)], which _ —pr112 2 _
correspond to the wave vectoss “ w/a<|k, |<w/a and 3prpFol+ 277 (Ut Ui Ir (A, =2r,E,)

pa)

e “Xmla<|kj|<m/a (ais the lattice constantfor the pa- —3pr \F,1—=20[UZ,roxFot UoeU yo(T mFo
rametersv, , v, A, , \|, andD and the effective coupling )
constantdJ g, U9, U, , andU,,,,. The effective coupling +27Pro\F,)+27PU 1 \F L] (13

constants are defined &k, =Kq_ (A5, D)/27v} , wherex _ .

are 0 andp, andy are 0 ando (see Table )l HereKy  Ax, Bx, Cx, Ex, andF, in Egs.(12—(14) are given by
=%/(2m), andS, is the surface area ofdrdimensional unit
sphere. Finally, the rescalings are performedas-e”x, ,
x|—€ *x|, h—e’*h, andt—e’?. The rescaling leads to

Ax=H+I‘X)\|, BX=E+I‘X)\F,

I’OA(E)\()H/)\Oi)—>62/(17)()l'0>\ and ron (SN /N,0) Cx=A+raB, E=B+r,C, (14
—e?(70r . From the scale invariancg=1 is obtained,
provided thatro,#0 andr,, #0. The scaling relations Fx=F+1aG,

+z=2 anda+z=2—p are obtained from the scale invari- ) )
ance of\ gy and\ .y, respectively. Foy=1, the recursion Wherexis 0 orp. A B, C, E, F, G, H, andl in Eq. (14) are
relations are explicitly calculable, but could not be done forA=Q(0,(d—2)/2,3, B=Q(2,(d-2)/2,3, C=Q(4,(d

x#1. Hence we consider the recursion relations fer1  —2)/2,3), E=0Q(0,4/2,2), F=0Q(24d/2,2), G
andr,>0. —Q(44d/2,2), H=Q(0,d-2)/2,2, and 1=Q(2,d
We find the RG recursion relations fgr=1 as —2)/2,2), respectively, where
dVJ_ J’w ya
- = —2_ By2v)=1 d . 15
5 ~vilz—2- (@)}, (5) Q(a,B,7) . y(1+y2)ﬂ(1+rvy2)y (15
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Now let us consider the following four sets of coupling con- ANKPZ equation with white noise, which was studied by
stants: Ugo,U ,0),(Uos U ,0), (Uoo,Uo,), and U,0,U,,).  Mukherji and Battacharjefl1].
From the RG recursion relations, we found on- or off-axial Inthe (Uy,,U,;) plane, the fixed points are on axes since
stable fixed points for the four sets of parameters we considd(Uo, /U ,,)/d/=—p(Uy,/U,,). When >0 and p=0,
ered. In each set, there exist stable fixed pointsrfgi-0  one can see from E¢9) that there exists a stable fixed point
andr,, <0 (x is 0 orp) if d<d,. In the case of,, >0 (i.e., ©ntheUy, axis ifd<d.=2+20. At this fixed point, where
the signs of\,| and \,, are the sam the anisotropy is shor_t-range interaction couples with correlated noise, the dy-
irrelevant at the fixed points of each set. Then the behaviof?@Mic and the roughness exponents are obtained from Eg.
of the RG flows is similar to that for the isotropic case stud-(>): Ed-(9) and the relatiorz+«a=2 by settingr,/d/=0
ied by Chattopadhyay, so that we will not discuss this case®"d Yo, /97 =0,
In case ofr,, <0 ( i.e., the signs ok, and\,, are oppo- 1 1
site), the anisotropy iselevantat the fixed points of each set z= §(4+ d—20), a= 5(2— d+20), (19
if d<d.. Then the behavior of the RG flows is different
from the one for the isotropic case. Although there exists @rovided thatr, #0 andU,,# 0. Equation(19) shows that
nontrivial stable fixed point for,, <O, it is difficult to de-  the roughness exponent increases while the dynamic expo-
rive the analytic formula for the fixed poinf and the on- or nent decreases, due to the presence of spatial correlations in
off-axis fixed points for each set of parameters &r2. noise. Whend=2, we obtainr* = —r,, as the solution of
Instead, the stable fixed point can be found numerically byr /9/=0. Forr,, <0, the stable fixed points of the param-
iterating the RG transformation. However, we can obtain areters are given exactly by
analytic formula forr* , and the on- or off-axis fixed points

2 23 \/EO'

exactly ford=2. From now we consider only the casg U*’= U*2=O (20)
<0 in d=2, where the anisotropy is relevant. 00 7(34¢)’ po

Inthe (Ugo,U o) plane, two fixed points are on axes since
d(Ugo/U 0)/d/'=—p(Ugo/U o). For p=0, the physical where
properties of the ANKPZ equation are the same as those of 120\/r—*
the AKPZ equation with white noise, which was studied by (=—2 . (21)
Wolf [15]. The two fixed points’ = =r, are obtained ex- (1+ \/E)2

actly for d=d,=2 from Eq.(6), by settingdr, /d/=0. At o\ e 4 5150 20 andp=0, this fixed point is

the fixed pointr* = —rg,, the parametet)y is renormal- . L
ized to zero. Hence the nonlinear terms in the AKPZ equa-Stable’ and the exponeqts are given by @) W'th d=2.
Whenp>0, a stable fixed point on the ,, axis becomes

tion with white noise become irrelevant, and the AKPZ ! -
equation belongs to the EW universality class. This meangelevant 'fd<d°_2+2p+.20' From Eq.(5), Eq. (10), and
Z+a=2—p, the dynamic and roughness exponents are

that when the signs of’s are opposite, the nonlinear terms . b
of the AKPZ equation become irrelevant even though thed!Ven by

values of\’s are finite. However, whep>0, there exists a 1 1
stable fixed point on th&J ,, axis if d<d,=2+2p. Thus, z=3(4+d=2p=20), a=3(2-d+20-p),
even though the signs of nonlinearities are opposite, the non- (22)
linear terms do not become irrelevant. Whes 2, Eq. (6)
can be written exactly as provided thatv, #0 andU ,,#0. In this case, the correlated
noise coupled with the long range KPZ nonlinearity de-
dr, 77-27P(rp)\+ry)u’2)0 , creases the dynamic exponent. However, unlike(E®), the
vl 8(11 yr )23 [+ )2(r 1)) roughness exponent dependshmih valuesof p ando. For
L2 20+2—d<p the roughness exponent decreases, while for
+6p(rpx+2rpx\/r_,,—2r?,/2—ri)]- (16) 20+2—d>p it increases. But if &= p, the roughness ex-

ponent does not depend on the correlated noise as well as the
long-range KPZ nonlinearity. A solution aofr,,/9/=0 is
given byry=-r, in d=2. Forr, <0, the stable fixed
points are given exactly by

Thusr} =—r, is the solution ofr,/d/=0. Forr , <0,
the fixed point is given exactly by

3+2 *
* :0 U* — 2 p\/cp *2 *2 23+p\/E(p+0_)
00— Ypo o ™ PN Up,=0, U? = . (23
7[3X 2°(1+6p\r*/(1+r*)?)—1] Pe @[3+ (1+3pl20) ]
1
17 Thus, ifp+0>0 andp>0, this fixed point is stable, and the
From Eq.(5), for small p we obtained exponents are given by EQR2) with d=2. In contrast, for
p<0, the fixed point Eq(23) becomes irrelevant except for
z=2—p+0(p?). (18) NAo=0. The surface in all spac&Jg,,U,,) is governed by

the fixed poin Eq. (20)].
Thus, we have a stable fixed point at which a new exponent In the (Uq,Ugq,) plane, the physical properties of the
differs from that of isotropic NKPZ equation. Whgn<0, = ANKPZ equation are the same as those of the AKPZ equa-
since d=2>2+2p, the ANKPZ equation belongs to the tion with spatially correlated noisgl8]. In this plane the
EW universality class. This is the same situation as for thalynamics of the AKPZ equation with correlated noise is dif-
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ferent from that of the AKPZ equation with white noise, 5 \/r_*
which belongs to the EW universality class. Whegp<0, a Uk, =——5{-360>-3¢%p(3p+20)
stable fixed point of the RG flows exists in the off-axis re- Tl
gion, p_rovided .thatd<dc=2+20 apd o>0. At r’= +4lo(—9p+ 2V Pp—30+ 210 )
—ro, With negative value of y, , the fixed point of the pa-
rameters is given exactly id=2 by +3({p+20)(360°+ {?(3p+20)?
— _ 2+ _ 1+ 1/
2 Ao\rE (24art9-(+3)V7r2(+9 ALo[(=9+27"")p+2(~3+21 )]},
0w g 22 ' This fixed point is stable fop,in<p<pmax andd<2+2p
(24) + 20, wherep,in=— o, andp,ax is the value satisfying the
" 40\/E( ——9+3Z+2{+9 condition
Oc T §2 . 2pp
. ) ——=—0 (p>0). (26)

The dynamic exponent and the roughness exponents associ- (20—3) 18Vr3p

ated with the fixed point are given by Ed.9), which is valid (1+ \/r—*)z
for d<d,=2+20 ando>0. Although these exponents are v
the same as those obtained from the isotropic KPZ equatioat this fixed point, the dynamic and roughness exponents are
with spatially correlated noise, there is a difference in thegiven by Eq.(22) with d=2. As p goes to zero, the fixed
range of applicability of Eq(19). For the isotropic case, Eq. point of Eq. (25 moves to the fixed point of Eq24), and
(19) is valid only for d<3/2 and o, <o<omax, Where the case of short-ranged interaction is recovered.
Tmin=0d(d—=2)/[8(d—3/2)] and o= (d+1)/2 [19]. In conclusion, we have studied the ANKPZ equation with
However, for the anisotropic case, EQ9) is valid ford  spatially correlated noise in several parameter spaces, by us-
<d,=2+2¢ ando>0. Whend>d.=2+ 20, the effect of iNg the one-loop dynamic RG transformation. When the
a nonlinear term becomes irrelevant, and the dynamics of th@igns of nonlinearityAg) and Ao, or A, andx,, are the
ANKPZ equation is the same as that of the EW equation. S&me, the anisotropy becomes irrelevant. The scaling prop-
In the U,0,U,,) plane, the stable fixed point exists in erty is then described by the isotropic NKPZ equation with
the off-axis region of the parameter space thd,=2 cprrelate_d noise. However, when the s_|gns)\ts‘.are oppo-
+2p+20. Whend=2 ando>0, solvingdU ,o/d/ =0 and site, unlike the case of sho_rt—range_d interaction and white
) . N ) _hoise, the stable non-KPZ fixed point exists in the on- or
I yold/ =0 with 1y =—r,,, which is solution ofor,/9/" ¢t 4tis” of the four-dimensional parameter spaces of the ef-
=0, we obtain a stable fixed point far,<0. The stable  fective coupling constants. At the stable fixed point, the scal-

fixed point is located at ing behavior of the NAKPZ equation with white noise is
\/r—* different from that of the isotropic NKPZ equation with
w2_ v 2 . 2 . 14p white noise. However, for the correlated noise, the same ex-
PO WU§2{360 T(Bp+20)"m4o(=9p 2 0p ponents are given in both NKPZ and NAKPZ equations.
" This is because both correlated noise anderms are not
—60+2Pa)—(3¢{pt60+2{0) renormalized.
X (360%+ {*(3p+20)? This work was supported by the Korean Science and En-
. . 24p B 14p 1 gineering FoundatiofGrant No. 98-0702-05-01)3and also
4o{(=9+2% ")p+2(=3+27) 0], in part by the Ministry of Education through the BK21
(250 project.
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