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Renormalization group analysis of the anisotropic nonlocal Kardar-Parisi-Zhang equation
with spatially correlated noise

Youngkyun Jung, Kwangho Park, Hyun-Joo Kim, and In-mook Kim
Department of Physics, Korea University, Seoul 136-701, Korea

~Received 31 March 2000!

We study an anisotropic nonlocal Kardar-Parisi-Zhang~KPZ! equation with spatially correlated noise by
using the dynamic renormalization group method. When the signs of nonlinear terms in parallel and perpen-
dicular directions are opposite, the correlated noise coupled with the long ranged nature of interaction produces
a stable non-KPZ fixed point ford,dc . For the uncorrelated noise, the roughness and dynamic exponents
associated with the stable fixed point are different from those of the isotropic nonlocal KPZ equation, while for
the correlated noise the exponents are the same as those of the isotropic case.

PACS number~s!: 05.40.2a, 68.35.Fx, 05.70.Ln, 64.60.Ht
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For a long time the kinetic roughening of surface h
attracted much interest because it is related to various ph
cal phenomena such as crystal growth, bacterial growth,
per wetting, molecular beam epitaxy, etc.@1#. An interesting
feature of the kinetic roughening of a surface is that
global surface width shows a nontrivial scaling behavi
The global surface width is defined byW(L,t)
5^L2d( i@hi(t)2h̄(t)#2&1/2. The surface width scales asW

;ta/z for t!Lz, and W;La for t@Lz. Here h̄,L,d, and
hi(t) denote the mean height, the system size, the subs
dimension, and the height at timet and sitei, respectively.a,
z, and b(5a/z) are the roughness, the dynamic, and
growth exponent, respectively. A well-known continuu
equation for the kinetic roughening of a surface is t
Kardar-Parisi-Zhang~KPZ! equation@2#,

]h~x,t !

]t
5n¹2h1

l

2
~¹h!21h~x,t !. ~1!

The noise h(r ,t) satisfies ^h(k,v)&50, and
^h(k,v)h(k8,v8)&52Ddd(k1k8)d(v1v8), where
h(k,v) is the Fourier transform of noiseh(r ,t) andd is the
substrate dimension. The KPZ equation has a nonlinear t
of short-range describing the lateral growth. The KPZ eq
tion without a nonlinear term is called the Edward
Wilkinson equation@3#. The conserved version of the KP
equation is a conserved KPZ equation@4,5#.

The applicability of the KPZ equation seems to enco
pass a variety of growth phenomena, but KPZ behavior is
observed in many experiments about the surface growth.
cently it was proposed that incorporating the long-rang
nature of interactions is necessary for a wide class of pr
lems such as the long-ranged hydrodynamic interactio
proteins, colloids, etc.@6–10#. Phenomenological equation
in the presence of long-range interactions, the nonlocal K
~NKPZ! equation @11# and the nonlocal conserved KP
~NCKPZ! equation@12# were introduced. The long-range e
fect of the nonlinear terms in both equations is introduced
coupling the gradients at two different points. It was fou
that, due to the long-ranged nature, the roughness of
surface is changed, and several distinct phases appear
effect of spatially correlated noise on the NKPZ and NCK
equations was also studied@13,14#. The correlated noise
PRE 621063-651X/2000/62~2!/1893~4!/$15.00
s
si-
a-

e
.

te

e

rm
-

-
ot
e-
d
b-
s,

Z

y

he
he

coupled with the long-range interactions, produces new fi
points at which the roughness of the surface depends on
the long-range interaction strength and the spatially corr
tion parameter.

On the other hand, it is well known that the critical exp
nents can also be modified by an anisotropic nature of
substrate @15#. Wolf @15# studied the anisotropic KPZ
~AKPZ! equation, which can be applied to various physic
growth problems such as ion-sputtered surface growth@16#,
and surface growth on the reconstructed surface struc
@17#. The AKPZ equation is written as

]h~r ,t !

]t
5n i¹ i

2h1n'¹'
2 h1

l i

2
~¹ ih!2

1
l'

2
~¹'h!21h~r ,t !, ~2!

where¹'(¹ i) is the gradient along the perpendicular~par-
allel! direction. The anisotropy meansr n[n i /n'Þ1 and
r l[l i /l'Þ1. From studying the AKPZ equation with
white noise in 211 dimensions by using the dynamic reno
malization group~RG! method, Wolf found that when the
signs ofl ’s are opposite (r l,0), the nonlinear terms turn
out to be irrelevant under the RG transformation. As a res
the AKPZ equation with opposite signs ofl ’s belongs to the
Edwards-Wilkinson~EW! universality class.

To our knowledge, there is no study about how the pr
ence of anisotropy changes the physical properties of
NKPZ equation with spatially correlated noise. In this pap
we study the anisotropic NKPZ~ANKPZ! equation with spa-
tially correlated noise by using the dynamic RG method. T
ANKPZ equation with spatially correlated noise is written

]h~r ,t !

]t
5n i¹ i

2h~r ,t !1n'¹'
2 h~r ,t !1h~r ,t !

1 (
C5i ,'

E dr 8
1

2
qC~r 8!

3¹Ch~r1r 8,t !•¹Ch~r2r 8,t !. ~3!

The noiseh(r ,t) satisfieŝ h(k,v)&50, and
1893 ©2000 The American Physical Society
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^h~k,v!h~k8,v8!&52D~k,v!dd~k1k8!d~v1v8!.
~4!

For spatially correlated noise, the form ofD(k,v) can be
written asD01Dsk22s. Heres is an exponent characteriz
ing the decay of spatial correlations. The kernelq'(r ) and
q i(r ) have a short-ranged partl0Cdd(r ) and a long-ranged
part lrCr r2d. In Fourier space,qC(k)5l0C1lrCk2r,
whereC are' andi . We consider only the case of positiv
n' andn i for stable surfaces. In this study, when the signs
l ’s are opposite, we found that a non-NKPZ fixed po
exists in the parameter space of the effective coupling c
stants if d,dc . However, when the signs ofl ’s are the
same, the anisotropy becomes irrelevant, and thus the sc
behavior is the same as that of the isotropic NKPZ equa
@13#.

The calculations of the RG transformation were p
formed by combining two methods, one of which was us
by Chattopadhyay to study the NKPZ equation with cor
lated noise@13#, and the other by Jeonget al. to study the
AKPZ equation with correlated noise@18#. The steps of the
RG transformation are as follows. First, the anisotropic
ponent x is introduced to relate two characteristic leng
scales asj i;j'

x , wherej i and j' are characteristic length
scales in parallel and perpendicular directions on the s
strate, respectively. Next, a coarse-graining transformatio
performed within the one-loop order by integrating out t
fluctuations of heights within small length scales@19#, which
correspond to the wave vectorse2l p/a<uk'u<p/a and
e2l xp/a<ukiu<p/a (a is the lattice constant!, for the pa-
rametersn' , n i , l' , l i , andD and the effective coupling
constantsU00, Ur0 , U0s , andUrs . The effective coupling
constants are defined asUxy

2 5Kd21(lx'
2 Dy)/2pn'

3 , wherex
are 0 andr, and y are 0 ands ~see Table I!. Here Kd
5Sd /(2p)d, andSd is the surface area of ad-dimensional unit
sphere. Finally, the rescalings are performed asx'→el x' ,
xi→el xxi , h→el ah, and t→el zt. The rescaling leads to
r 0l([l0i /l0')→e2l (12x)r 0l and r rl([lri /lr')
→e2l (12x)r rl . From the scale invariance,x51 is obtained,
provided thatr 0lÞ0 and r rlÞ0. The scaling relationsa
1z52 anda1z522r are obtained from the scale invar
ance ofl0C andlrC , respectively. Forx51, the recursion
relations are explicitly calculable, but could not be done
xÞ1. Hence we consider the recursion relations forx51
and r n.0.

We find the RG recursion relations forx51 as

dn'

dl
5n'$z222~d !%, ~5!

TABLE I. Table of the effective coupling constants. For e
ample,Ur0 is the coupling constant, where long-ranged interact
couples with white noise.

Coupling constant Interaction Noise

U00 Short range White noise
Ur0 Long range White noise
U0s Short range Correlated noise
Urs Long range Correlated noise
f
t
n-

ing
n

-
d
-

-

b-
is

r

drn

dl
5r nH ~d !2

1

r n
~s !J , ~6!

dU00

dl
5U00

22d

2
1

~U00
2 1U0s

2 !

2U00
~! !1

3

2
U00~d !, ~7!

dUr0

dl
5Ur0

22d12r

2
1

~Ur0
2 1Urs

2 !

2Ur0
~! !1

3

2
Ur0~d !,

~8!

dU0s

dl
5U0s

22d12s

2
1

3

2
U0s~d !, ~9!

dUrs

dl
5Urs

22d12r12s

2
1

3

2
Urs~d !, ~10!

where each symbol is given by

~d !5~U00
2 1U0s

2 !S A02
2C0

d21D1~U00Ur01U0sUrs!

3F S A02
2C0

d21D122rS Ar2
2Cr

d21D2
3rB0

d21 G
122r~Ur0

2 1Urs
2 !S Ar2

2Cr

d21
2

3rBr

d21 D2
2s

d21

3@U0s
2 B01U0sUrs~B0122rBr!122rUrs

2 Br#,

~11!

~! !5~U00
2 1U0s

2 !~C01r 0lE0!1212r~U00Ur01U0sUrs!

3~C01r rlE0!1222r~Ur0
2 1Urs

2 !~Cr1r rlEr!, ~12!

~s !5~U00
2 1U0s

2 !r 0l~A022r nE0!1~U00Ur01U0sUrs!

3@r rl~A022r nE0!122rr 0l~Ar22r nEr!

23rr rlF0#122r~Ur0
2 1Urs

2 !@r rl~Ar22r nEr!

23rr rlFr#22s@U0s
2 r 0lF01U0sUrs~r rlF0

122rr 0lFr!122rUrs
2 r rlFr#. ~13!

Ax , Bx , Cx , Ex , andFx in Eqs.~12!–~14! are given by

Ax5H1r xlI , Bx5E1r xlF,

Cx5A1r xlB, Ex5B1r xlC, ~14!

Fx5F1r xlG,

wherex is 0 or r. A, B, C, E, F, G, H, andI in Eq. ~14! are
A5Q„0,(d22)/2,3…, B5Q„2,(d22)/2,3…, C5Q„4,(d
22)/2,3…, E5Q(0,d/2,2), F5Q(2,d/2,2), G
5Q(4,d/2,2), H5Q„0,(d22)/2,2…, and I 5Q„2,(d
22)/2,2…, respectively, where

Q~a,b,g![E
0

`

dy
ya

~11y2!b~11r ny2!g
. ~15!
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Now let us consider the following four sets of coupling co
stants: (U00,Ur0),(U0s ,Urs), (U00,U0s), and (Ur0 ,Urs).
From the RG recursion relations, we found on- or off-ax
stable fixed points for the four sets of parameters we con
ered. In each set, there exist stable fixed points forr xl.0
andr xl,0 (x is 0 orr) if d,dc . In the case ofr xl.0 ~i.e.,
the signs oflxi and lx' are the same!, the anisotropy is
irrelevant at the fixed points of each set. Then the behav
of the RG flows is similar to that for the isotropic case stu
ied by Chattopadhyay, so that we will not discuss this ca
In case ofr xl,0 ~ i.e., the signs oflxi andlx' are oppo-
site!, the anisotropy isrelevantat the fixed points of each se
if d,dc . Then the behavior of the RG flows is differe
from the one for the isotropic case. Although there exist
nontrivial stable fixed point forr xl,0, it is difficult to de-
rive the analytic formula for the fixed pointr n* and the on- or
off-axis fixed points for each set of parameters ford.2.
Instead, the stable fixed point can be found numerically
iterating the RG transformation. However, we can obtain
analytic formula forr n* , and the on- or off-axis fixed point
exactly for d52. From now we consider only the caser xl

,0 in d52, where the anisotropy is relevant.
In the (U00,Ur0) plane, two fixed points are on axes sin

d(U00/Ur0)/dl 52r(U00/Ur0). For r50, the physical
properties of the ANKPZ equation are the same as thos
the AKPZ equation with white noise, which was studied
Wolf @15#. The two fixed pointsr n* 56r 0l are obtained ex-
actly for d5dc52 from Eq.~6!, by settingdrn /dl 50. At
the fixed pointr n* 52r 0l , the parameterU00 is renormal-
ized to zero. Hence the nonlinear terms in the AKPZ eq
tion with white noise become irrelevant, and the AKP
equation belongs to the EW universality class. This me
that when the signs ofl ’s are opposite, the nonlinear term
of the AKPZ equation become irrelevant even though
values ofl ’s are finite. However, whenr.0, there exists a
stable fixed point on theUr0 axis if d,dc5212r. Thus,
even though the signs of nonlinearities are opposite, the n
linear terms do not become irrelevant. Whend52, Eq. ~6!
can be written exactly as

drn

dl
5

p22r~r rl1r n!Ur0
2

8~11Ar n!2r n
3/2 @~11Ar n!2~r rl2r n!

16r~r rl12r rlAr n22r n
3/22r n

2!#. ~16!

Thus r n* 52r rl is the solution of]r n /]l 50. For r rl,0,
the fixed point is given exactly by

U00*
2
50, Ur0*

2
5

2312rAr n* r

p@332r
„116rAr n* /~11Ar n* !2

…21#
.

~17!

From Eq.~5!, for smallr we obtained

z522r1O~r2!. ~18!

Thus, we have a stable fixed point at which a new expon
differs from that of isotropic NKPZ equation. Whenr,0,
since d52.212r, the ANKPZ equation belongs to th
EW universality class. This is the same situation as for
l
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ANKPZ equation with white noise, which was studied b
Mukherji and Battacharjee@11#.

In the (U0s ,Urs) plane, the fixed points are on axes sin
d(U0s /Urs)/dl 52r(U0s /Urs). When s.0 and r50,
one can see from Eq.~9! that there exists a stable fixed poi
on theU0s axis if d,dc5212s. At this fixed point, where
short-range interaction couples with correlated noise, the
namic and the roughness exponents are obtained from
~5!, Eq. ~9! and the relationz1a52 by setting]r n /]l 50
and]U0s /]l 50,

z5
1

3
~41d22s!, a5

1

3
~22d12s!, ~19!

provided thatn'Þ0 andU0sÞ0. Equation~19! shows that
the roughness exponent increases while the dynamic e
nent decreases, due to the presence of spatial correlatio
noise. Whend52, we obtainr n* 52r 0l as the solution of
]r n /]l 50. Forr 0l,0, the stable fixed points of the param
eters are given exactly by

U0s*
2
5

23Ar n* s

p~31z!
, Urs*

2
50, ~20!

where

z5
12sAr n*

~11Ar n* !2
. ~21!

Thus, if d,dc5212s, s.0, andr50, this fixed point is
stable, and the exponents are given by Eq.~19! with d52.

Whenr.0, a stable fixed point on theUrs axis becomes
relevant ifd,dc5212r12s. From Eq.~5!, Eq. ~10!, and
z1a522r, the dynamic and roughness exponents
given by

z5
1

3
~41d22r22s!, a5

1

3
~22d12s2r!,

~22!

provided thatn'Þ0 andUrsÞ0. In this case, the correlate
noise coupled with the long range KPZ nonlinearity d
creases the dynamic exponent. However, unlike Eq.~19!, the
roughness exponent depends onboth valuesof r ands. For
2s122d,r the roughness exponent decreases, while
2s122d.r it increases. But if 2s5r, the roughness ex
ponent does not depend on the correlated noise as well a
long-range KPZ nonlinearity. A solution of]r n /]l 50 is
given by r n* 52r rl in d52. For r rl,0, the stable fixed
points are given exactly by

U0s*
2
50, Urs*

2
5

231rAr n* ~r1s!

p@31~113r/2s!z#
. ~23!

Thus, ifr1s.0 andr.0, this fixed point is stable, and th
exponents are given by Eq.~22! with d52. In contrast, for
r,0, the fixed point Eq.~23! becomes irrelevant except fo
l050. The surface in all space (U0s ,Urs) is governed by
the fixed point@Eq. ~20!#.

In the (U00,U0s) plane, the physical properties of th
ANKPZ equation are the same as those of the AKPZ eq
tion with spatially correlated noise@18#. In this plane the
dynamics of the AKPZ equation with correlated noise is d
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ferent from that of the AKPZ equation with white nois
which belongs to the EW universality class. Whenr 0l,0, a
stable fixed point of the RG flows exists in the off-axis r
gion, provided thatd,dc5212s and s.0. At r n* 5
2r 0l with negative value ofr 0l , the fixed point of the pa-
rameters is given exactly ind52 by

U00*
2
5

4sAr n*

p S z214z192~z13!Az212z19

z2 D ,

~24!

U0s*
2
5

4sAr n*

p S 2z2913Az212z19

z2 D .

The dynamic exponent and the roughness exponents as
ated with the fixed point are given by Eq.~19!, which is valid
for d,dc5212s ands.0. Although these exponents a
the same as those obtained from the isotropic KPZ equa
with spatially correlated noise, there is a difference in
range of applicability of Eq.~19!. For the isotropic case, Eq
~19! is valid only for d,3/2 andsmin,s,smax, where
smin5d(d22)/@8(d23/2)# and smax5(d11)/2 @19#.
However, for the anisotropic case, Eq.~19! is valid for d
,dc5212s ands.0. Whend.dc5212s, the effect of
a nonlinear term becomes irrelevant, and the dynamics o
ANKPZ equation is the same as that of the EW equation

In the (Ur0 ,Urs) plane, the stable fixed point exists
the off-axis region of the parameter space ford,dc[2
12r12s. Whend52 ands.0, solving]Ur0 /]l 50 and
]Urs /]l 50 with r n* 52r rl , which is solution of]r n /]l

50, we obtain a stable fixed point forr rl,0. The stable
fixed point is located at

Ur0*
2
5

Ar n*

psz2
$36s21z2~3r12s!224zs~29r1211rr

26s1211rs!2~3zr16s12zs!

3„36s21z2~3r12s!2

24zs@~291221r!r12~231211r!s#…1/2%,

~25!
e

E

P

.-C
ci-

n
e

he

Urs*
2
5

Ar n*

psz2
$236s223z2r~3r12s!

14zs~29r1211rr23s1211rs!

13~zr12s!„36s21z2~3r12s!2

24zs@~291221r!r12~231211r!s#…1/2%.

This fixed point is stable forrmin,r,rmax andd,212r
12s, wherermin52s, andrmax is the value satisfying the
condition

2rr

~2r23!2
18Ar n* r

~11Ar n* !2

52s ~r.0!. ~26!

At this fixed point, the dynamic and roughness exponents
given by Eq.~22! with d52. As r goes to zero, the fixed
point of Eq. ~25! moves to the fixed point of Eq.~24!, and
the case of short-ranged interaction is recovered.

In conclusion, we have studied the ANKPZ equation w
spatially correlated noise in several parameter spaces, by
ing the one-loop dynamic RG transformation. When t
signs of nonlinearityl0i and l0' or lri and lr' are the
same, the anisotropy becomes irrelevant. The scaling p
erty is then described by the isotropic NKPZ equation w
correlated noise. However, when the signs ofl ’s are oppo-
site, unlike the case of short-ranged interaction and wh
noise, the stable non-KPZ fixed point exists in the on-
off-axis of the four-dimensional parameter spaces of the
fective coupling constants. At the stable fixed point, the sc
ing behavior of the NAKPZ equation with white noise
different from that of the isotropic NKPZ equation wit
white noise. However, for the correlated noise, the same
ponents are given in both NKPZ and NAKPZ equation
This is because both correlated noise andl terms are not
renormalized.
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